Effective diffusion of scalar fields in a chaotic flow
نویسندگان
چکیده
The advection of a tracer field in a fluid flow can create complex scalar structures and increase the effect of weak diffusion by orders of magnitude. One tool to quantify this is to measure the flux of scalar across contour lines of constant scalar. This gives a diffusion equation in area coordinates with an effective diffusion that depends on the structure of the scalar field, and in particular takes large values when scalar contours become very extended. The present paper studies the properties of this effective diffusion using a mixture of analytical and numerical tools. First the presence of hyperbolic stationary points, that is saddles, in the scalar concentration field is investigated analytically, and it is shown that these give rise to singular spikes in the effective diffusion. This is confirmed in numerical simulations in which complex scalar fields are generated using a time–periodic flow. Issues of numerical resolution are discussed and results are given on the dependence of the effective diffusion on grid resolution and discretization in area or scalar values. These simulations show complex dependence of the effective diffusion on time, as saddle points appear and disappear in the scalar field. It is found that time–averaging (in the presence of an additional scalar source term) removes this dependence to leave robust results for the effective diffusion.
منابع مشابه
The influence of periodic islands in the flow field on a scalar tracer in the presence of a steady source
In this paper we examine the influence of periodic islands within a time periodic chaotic flow on the evolution of a scalar tracer. The passive scalar tracer is injected into the flow field by means of a steady source term. We examine the distribution of the tracer once a periodic state is reached, in which the rate of injected scalar balances advection and the molecular diffusion κ. We study t...
متن کاملFinite-time statistics of scalar diffusion in Lagrangian coherent structures.
We study the variability of passive scalar diffusion via the statistics of stochastic particle dispersion in a chaotic flow. We find that at intermediate times when the statistics of individual trajectories start to exhibit scaling-law behaviors, scalar variance over the entire domain exhibits multimodal structure. We demarcate the domain based on Lagrangian coherent structures and find that th...
متن کاملThe role of diffusion in the chaotic advection of a passive scalar with finite lifetime
We study the influence of diffusion on the scaling properties of the first order structure function, S1, of a two-dimensional chaotically advected passive scalar with finite lifetime, i.e., with a decaying term in its evolution equation. We obtain an analytical expression for S1 where the dependence on the diffusivity, the decaying coefficient and the stirring due to the chaotic flow is explici...
متن کاملPersistent patterns in deterministic mixing flows
– We present a theoretical approach to the description of persistent passive scalar patterns observed in recent experiments with non-turbulent time-periodic two-dimensional fluid flows. The behaviour of the passive scalar is described in terms of eigenmodes of the evolution operator which coincides with the Frobenius-Perron operator for the corresponding Lagrangian dynamics with small noise; th...
متن کاملUniversal properties of chaotic transport in the presence of diffusion
The combined, finite time effects of molecular diffusion and chaotic advection on a finite distribution of scalar are studied in the context of time periodic, recirculating flows with variable stirring frequency. Comparison of two disparate frequencies with identical advective fluxes indicates that diffusive effects are enhanced for slower oscillations. By examining the geometry of the chaotic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008